
00€ FOR LABORATORY COMPUTERS. (U)rAO3
7 19O ARIZ

~~~~~~

IV

~~~~~~~~~~

rT OF cHEMI STRY F/6 9/2

LASSIFI~~
m nB PHI~~ !PS. N F BURKE, S S WILSON NOOOfl—75~~ —Q 5t2

I
END

D A T E
FR MED

4 — 7 7

r

I
_ J

-p

_ _ _ ~~~TTT~

~~~~ OFF I CE OF NAVAL RES~EA R Cl 1
C o n t r a c t  NOO O1 4—75 ~~C—O5 12

Task No.  NR 051—518
Technical  Report  No . 8

ThREADED CODE FOR

LAB O RATORY COMPUTERS

J. B. Ph i l l ips , N . F. Burke  and C. S. Wi lson

C h e m i s t ry  D e p a r t m e n t
U n i v e r s i t y  of A r i z o n a
Tucson , Ar izona  85721

Submitted for P u b l i c a t ion  in

L Communica t ions  of t h e  ACM

February  1977

R e p r o d u c t i o n  in whole  or in p ; ir t  is p e r m i t t e d  f o r  any pu rpose  of the
U n i t e d  S t a t e s  Gove rnm en t

Approved  f o r  P u b l i c  Re lease:  D i s t r i b u t i o n  U n l i m i t e d

4

I I.

~ ~~~~~~~~~~ ~ ~ ~~,. ... ~~~ ~ 
.. . 

~

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


TT~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ T~~~~~~~~T’

Abstract

A typ ical minicompu ter has been transformed in to a threaded code

machine b y the addi tion of a simple , fast interpreter imp lemented in

microcode. When made directly available to the programmer , the threaded

code programming technique is a very convenient and eff icien t means of

str ucturing programs , particularly in systems where p rograms are

cont inual ly being m o d i f i e d .

Key Words and Phrases:

in terpr eter , threaded code, mach ine code , subroutine calls , time tradeoff ,

space t r a d e o f f , comp iled code , cod e genera tion , laboratory computers ,

problem orienteo languages

CR Categories 4.12, 4.13, 4.21 , 4.22

Acknowledgemen t

This work was suppor ted in par t by O f f ice of Naval Research t h r o u g h

ONR Contract No. N00014—75—C—05l2.

\c. —

* -

I

c;.
-

~~~~- 1 . -~~- -~~ --- ~~~~~~~~~~~~~~~ 
_

~
__ _

~
_±

~~~~~~~~

~~~~~~~ ~j



_
~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~-~~~~- ~~~~~~~~~~~~~~~~~ ~~

-
-
~~~

—

I. Introduction

In the course of developing a programming and operating system for a

laboratory computer network, an interpre tive techni que related to the threaded

code (1,3) programm ing technique has been developed. In threaded code a pro—

gram consists of a string of addresses pointing to service routines. The pro-

gram is executed interpretively as shown in Figure 1. Upon cor.~p 1etion of each

service routine , con trol is transferred to the next one in sequence by incre—

• menting the threaded code position counter and then j ump ing i n d i r e c t ly t h r o u g h

the address in the threaded program to the next service routine. This process

can be qui te efficient . In fact , for some computer instruction sets (e.g.

the PDP 11) it is faster than the standard subroutine call and return . Thus

threaded code and related techniques offer most of the advangages of an in-

terpretive mode of operation without the major penalty of slow program cx—

excut ion.

A programming system based on the concept of threaded code , FORTH (4),

has been implemented on a number of different computers used in instrument

control app lications. It uses th e idea of indirect threaded code (3) for

grea ter flex ibility in def ining service routines. Speci f i cal ly, service

routines are provided to move the threaded code position counter to aad from

a stack so that one threaded program may call another as shown in Figure 2.

This capability is an extremely important extention of the threaded code

techni que because it allows a very convenient Ii icrarchical structurin g of

programs. In addi tion , FORTH provides for interactive comp ilatio n of both

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ program-



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_ _ _ _

~~~~~~~

_

~~~~~~~~

_
. 

- -

~

—2—

ming technique is limited in two ways for our approach to laboratory corn—

puters: (1) dedication to single user; (2) a syntax which is difficult to

use in larger programs.

Threaded code can be used to produce highly hierarchically structured

programs which , in addi tion to being smaller in size than equivalent con—

ven tionally structured programs, are also often easier to write and under—

- 
- - stand. This is closely related to the idea of structured programming (2)

in which one of the basic pr inciples is the liberal use of subprogram struc—

t ’~res (7). Because of its potential usefulness as an efficient means of

-
~ structuring programs , it is importan t that the threaded programming tech-

ni que be further developed to make it more generally app licable. Improve-

ments can be made bo t h  in the  design of the technique itself and in methods

• ~~ wr iting structured programs using it.

1.1. ~ irrocode Imp lementation of a Threaded Code System

HISS , Hierarchical Interactive Sharing System , an operating system

w r i t t e n  u s i n g  th readed  code , has been imp lemented  fo r  a Hewle t t  Packard

2100 with the writable control store (WCS) option installed. lt is an

experimental system for which efficiency in software imp lementation and

m a i n t e n a n c e  are more importan t than e f f i c i e n cy  in o p e r a t i o n . For th i s

reason , it was decided to code as much of it as possible in an interpretive

high level language rather than  assembly language. N ew microcode stored

- : in WCS was used to extend the instruction set for interpretation of

• threaded codt . Operating systems have been previousl y imp lemen ted in an inter—

pretive fashion , bu t with substain tial execut ion speed penal ti es ().

Basically, the flow of control is as illustrated in Figure 2. The 



~~T~~~~~~~- -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -

~

—3—

threaded code i n t e r p r e t e r is similar to the one described by Bell (1) and

works in the following way :

Step 1. Increment PC on top of control stack.

Step 2. Fetch S from PCth address of memory .

Step 3(a) If S denotes a service routine , execu te it.

Step 3(b) If not , push the address of S to control stack.
-

~~ Step 4. Go to Step 1.

A service routine, NEXT, is provided to delete the value of PC on top of

the control stack returning control to the calling threaded program.

The threaded code interpreter and its associated routines use 241
8

of

the 4008 words available in one WCS module. The rest of the WCS space is

available for use by low level service routines or user defined instructions.

An average interpreter cycle takes about 12 isec. of overhead time. Of this ,

about 4 ~isec. is used in fetching the instruction from a microcode imp lemented

virtual memory which is useful in this particular system but is not required

by the threaded programming technique itself.

Without microcode , threaded code would not be very efficient on the

HP 2100 because the standard instruction set does not include any index

instructions or registers for implementing stack operations. ~Iany other

conventional instruction sets would be better than the liP 2100 f’r this

app lica tion , but with the lIP 2100 mi cropr ogran ;niing caiahili ty a threaded

code interpreter can he imp lemen ted almost as efficientl y as if the computer

was desi gned s p e c i f i c a l l y fo r i t . U s i n g microcode the above thr eaded

code i n t e r p r e t e r , in c lu d i n g the ~LXT rout ine , can be i:~~ lcment ed as

a s ing le i n s t r u c t i o n which is e x e c u t e d at the cu d of each : serv iCe r o u t in c .

- _ _ _ _ _ _ _ _

T ’ ~~~: -~-- r-— ~~~

—4—

A threaded program in the HISS system consists of a string of code

numbers . This technique is essentially equivale nt to the strings of

addresses used in previous threaded code systems . The instruction re-

quired to transfer control between service routines is more specialized

than a simp le jump instruction , but through the use of micorcode it can

be implemented almost as efficiently.

There are several reasons for this use of code numbers instead of

addresses. First , some service rou tines are implement ed in microcod e and

therefore do not have core addresses. Second , the microcoded interpreter

can index a table of addresses in core just as fast as it can fetch an

indirect address fo r the indirect threaded code t e c h n i que (3) . Third , the

rou t ine to push: th readed code addresses to the control stack , St ep 3(b),

should be p a r t of the microcoded i n t e rp r e t e r ins tead of an indirectl y

re fe renced serv ice r o u t i n e as in FORTH . I t is s imp ler and more e f f i c i e n t

to make t he S tep 3 decis ion based on the range of the code number r a t h e r

than the value of a word f e tched f rom the p rog ram . F ina l l y , instead of the

f u l l 16 b i t word s requi red f o r addresses , 8 b i t s are s u f f i c i e n t to specif y

most code numbers significantl y reducing the mc:~orv required for threaded

code.

The u t i l i t y of t h i s st r u c t u r e can best be i l l us t r a t e d by ana logy with

the concept of a computer ’s i n s t r u c t i o n set . Almost always an instruction

set inc ludes a sub program ca l i in g i n s t r u c t i o n which e s s en t i a l l y allows t h e

programmer to d e f i n e new i n s t r u c t i o n s by w r i t in g p rog rams u s i n g t h e basic

i n s t r u c t i o n set and any p rev ious ly d e f i n e d sub program s . The t h r e a d e d pro—

- _ _ _ _ _

- . — — ---~~-- -•— -~~~•-—.-~?•-_-~---.1—.—--,—
~~~~~ _ ~•IuI~~~

_ _ _ _  _____ - -- — —— -

—5—

gramming technique is a gene ra l i za t ion  of the hierarchical subprogram idea.

Instead of one i n s t r u c t i o n  code fo r  ca l l ing  sub programs inside a low level

i n s t ruc t i on  set , all but  a very few codes are used to call subprograms and

the general purpose low level ins t ruc t ion  set is conf ined  to a special mode

of operat ion . A h ierarchical  set of sub programs thus  becomes the instruc-

tion set f o r  a special purpose system. The set of i n s t r u c t i o n s  provided b y

lower levels are more appropria te to a specific problem than a general

purpose language would be , so hi gher level p rog ra m s  can be made s h o r t e r  and

more unders tandable.

Differen t instruction sets can be defined for different app lications.

In f ac t , th roug h the  use of local codes the inst ruc t ion set can vary in

d i f f e r e n t  par ts  of a p rogram . By local iz ing the range of instruction codes

very  e f f i c i e n t  specia l ized  i n st r u c t i o n s  can be d e f i n e d  and used in one par t

of a program. The same instruction codes are then reused in o t h e r  p a r t s  of

the  program . Sinc e a given local i n s t r u c t i o n  has a s p e c i f i c  range  from

which  it is callable , the  programmer imp lement ing  it need not wor ry  about

making it completely foolproof and can so produ ce simp ler , more efficient

code. Also , a programmer working at higher levels is not tempted to use

a specialized lower level instruction which was not intended for his use .

Contras t  th is  w i t h  the  FORTH sys tem in which , ge n e r a l ly , all lower l evel

i n s t r u c t i o n s  are useabie b y anyone.

Codes less than  20 8 are i n t e r p r e t e d  as s e r v i ce  r o u t i n e s  a t  S tep  3(a).

All  o t h e r  codes are used to  in dex  in t o  t a b l e s  of t h r e a d e d  p rogra m addresses

which are pushed to the c o n t ro l  s ta c k  at  S t ep  3 (b ) .  C on t r o l  is t r an s f e r r e d

to one of the  208 microcoded  service r o u t i n e s  via  an i n d e x e d  microcode  j u m p

_ _



~~- —•J-~ 
— — —~ 

—.- -‘••- 5-- — ••S —~~ —‘-5- -~-‘-, —~~~~~~~ 
~— •—_~~~_,-,, ‘r-~~ ~~- 

-‘ 
— 

7’

— 6—

t ab le .  Most  of these r o u t i n e s  simpl y p e r f o r m  some o p e r a t i o n  which is in-

p or t a n t  enoug h to be in microcode , bu t  three  of them (NEXT , XO and ASOP)

are c e n t r a l  to the  ope ra t i on  of th is  t h r e a d e d  code s y s t em .  NEXT de l e t e s

the top address f r o m  the  con tro l  s tack , and as a r e s u l t , t r a n n t e r s  c o n t r o l

from the current t h r e a d e d  code r o u t i n e  to t h e  c a l l i ng  t h r e a d e d  p rog ram whose

address is next on the  con t ro l  stack. XO uses t h e  irn;m~ iiatel y follow ing

8 b i t  b y t e  to index in to  a table  of addeesses  of s e r v i c e  r o u t i n e s  ii: core.

These service routines provide basic arithmetic and an interface with the

core r e s iden t  o p e r a t i ng  sys t em.  ASOP s w i t c h e s  the computer from the  t h r e a d e d

code i n t e r p r e t e r  mode of ope ra t ion  to i t s  r e g u l a r  mac l ine  code mode. Ti:e

machine  code i n s t r u c t i on s  fo l low immedia te ly  a f t e r  the  ASOP code.

Parameters are passed to and r e s u l t s  r e t u r n e d  f r o m  ser v i c e  r o u t i n e s

and sub t h r e a d e d  p rog rams  th rough  the  use of a data stack . Th is data stack

is d i s t i n c t  f rom and should not  be c o n f u s e d  w i t h  the  c o nt r o l  s t a c k  wh i c h

conta ins the return addresses for sub threaded programs. Severa l of tile

basic rnicrocoded serv ice  r o ut i n e s  p rov ide  fo r  e l e m e n t a ry  o f le r at i o n s  on the

data stack including pushing constants to it , deleting th e  top word , and

dup licating the top word . Many other data stack operations such as simp le

a r i t h m e t i c  ope ra t i ons  a re  imp lemented as serv ice  r o u t i n es  t h r o u g h t i le  ~~

code.

A d d i t i o n a l  f e a t u r e s  pr o v i d e d  by t h i s  t h r e a ded  code sy s tem i n c l u d e

v i r t u a l  m e m o r y ,  loca l ly d e f i n e d  i n s t r u c t i o n  codes , and exceptional conditi on

e x i t s .  These are im p o r t a n t  f o r  the  ove ra l l  u s e f u l n e s s  of t i e  sy s t e m  b u t

are  not  neces sa ry  f o r  u n d e r s t a n d i n g  the  p r i n c i p les of t h r e a d e d  cede an d  So

will not be discussed here .



5—,--.— -.-.• —~~- —‘—‘S.-—— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘ -

~~~~~~ ~~~~ —

—

—7—

• III. Utility of Threaded Code for Laboratory Computers

The bi ggest p rob lem w i t h  small compute r s  in the research :  l a b o rat o r y  has

been , and still is, programming. Programs are usually small to medium in

size and include routines to interface with instruments , perform calculations

on data , sequence through the logic of experiments , and present results. liv

their very nature , experiments tend to change and so the  programs which perf orm

them also must change . All parts of an experimental program are subject to

change but those parts concerned with : the sequencing of o p e r a t i o n s  are especial-

ly so. This app lies to laboratory data proc~ ssing programs as well as real t i m e

con t ro l  programs . Very  o f t e n  the e x p e r i m e n t e r  mak ing  changes krows more about

the expe r imen t  than  the  p r o g r a m , and is not  i n t e r e s t e d  in l e a r i n i ng  any more

about  the p rogram than  necessary . I f  the p r o g r a m m i n g  ~o~ olved ~ i: an

;n~ n t  becomes too t roub lesome  t h e n  the  e x p e r im en t  won ’ t be done , p o t e n t i a l l y

valuable research is l e f t  u n f i n is h e d , and the “ c o m p u ter ” I:as f a i l e d  to do

i ts  job .

The threaded code techni que when combined w i t h  a suitable means of com-

p ilation offers interesting possibilities for improving the  laboratory computer

programming situation (5). The hierarchical structure it creates is ideal for

laboratory computer systems . At the b o t t o m  is t h e  t h r e a d e d  p r o g r a m  i n t e rp r e t e r

4 and var ious  r o u t i n e s  used by i t  coded in b o t h  m i c r o c o d e  and a s sembly  l a n g u a g e .

These should never be changed by the  c h e m i s t  t yp e  users and can he considered

as p a r t  of t u e  f i x e d  hardware. Next come t h e m a c h i n e  code i n s t r u m e n t  inter-

f a c e  and bas i c  a r i t h m e t i c  se rv ice  r o u t i n e s .  A n e v e  t h e m  a re  a s e r ie s  of  l eve l s

of threaded program build in g blocks defin ing all of the o per a t  i c u s  n e e d e d  t O

p e r f o r m  e x p e r i m e n t s  of a g iven t y p e .  At  t u e  h i g h i s i  leVcl ti le a c tu a l  exp er i— 
S

ments  arc  d e f i n e d  as Se qU en c e s  of opt r i i t i o i l s  to be p e r f o r m e d . i d e  ci , t - ; : i s l rv  of



‘5- •~~~~~~~~~~~~~~~~~~~~~~~ -

p

-8-

an experiment is separated from t h e detailed comh uter operations so the user

does not  i~ 1ve to u n d e r s t a n d  all the imp l em en t a t i on  d e t a i l s  in order to make

changes in the  e x p e r i m e n t.

Users performing experiments would confine their programming to the

hi ghest levels. With: an approproate s~~t of instr~ ctions provided by lower levels

programm ing at the  highest level should be little more than t y p i n g  in sets of

d i r e c t i v e s  desc r ib ing  the cond i t i on s  f o r  s p e c i f i c  e x p e r l m e nt s .  I n t e r m e d i a t e

level th readed  p rograms  are used to imp lement  sy s t e m s  f o r  p e r f o r m t h g e x p er i m e n t s

of var ious  t y p e s .  Users  w o r k i n g  at t h i s  level m u s t  u n d e r st a n d  the  c h e m i s t ry

involved in the e x p e r i m e n t s  to be done and in  a d d i t i o n  be r e a s o n a b l y  c o m p e t e n t

programmers .  Only limited knowled ge of the ultimate uses of a system is

needed to imp lement  rou t ines  at the lower levels but  increased  e x p e r t i s e  in

computer programming is req ui red .

U n t i l  now the  onl y sy s t e m  to make a t h r e a d e d  code techni que directl y

ava i lab le  to the p r o g r a m m e r  has been FO R Th ! ( 4 ) .  In the h ISS system a general

purpose  macro  processor  is used to t r a n s l a t e  t h r e a d e d  code source  to  b i n a r y

code  w h i c h  can be i n t e r p r e t e d  b y the  t ur e a d e d  code i n te r p r e t e r .  This approach:

was used fo r  two reasons.  F i r s t , i t  f i t s  t h e  s t r u ct u r e  of threaded code very

S . well .  New i n s tr u c t i o n  names  can easily be defined to match: the threaded code

• i n s t r u c t i o n  set a v aia lb l e  to t h e  p r o g r a m  b e i n g  c om p l l eu . An~ second , i t  pro-

v ides  t h e  f l e x i b i l i t y  r e q u i r e d  to  comp i le comp lex g r o u p s  of  programs like

the  hISS o p e r a t i n g  system. Althoug h th u s mic ro processor is not as in te r -

ac t ive  as F i ) P f h l , it p r o d u c e s  more r e i i u a b l e  p r o g r am s , b a nd i e s  comp lex s yn t a x

in a more st r a i gh t f o rw a r d  f a s h i o n , md is less p r o n e  to e r r o r s  cause d  by

symbols b e in g  r e f e r r e d  to ou t s ide  t h e i r  r an g e .

1:
- -~~~~ - -~~~~~~---~~~~~~~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~T~~
5- I~~~~~~ -~ ’ ‘-

~~~~~~~~~~~~~~~~~~~~

‘- 5-~~~~’ 7 5 - -5--
~
-5-5-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—9—

I n i t i a l l y ,  a macro is d e f i n e d  to g e n e r a t e  code fo r  each: mic rocode  and

core resident service routine . A section of threaded code can t h e n  be

written as a sequence of macro names in a fo rma t resembling a simp le assembly

language. Threaded code procedures are defined by giv ing macro na mes and

code number s  to each sec t i o n  of t h r e a d e d  code.  On ce d e f in e d , a procedure can

then be used In any o t her  t h r e a d e d  p r o g r a m  s I m p l y  be m e n t i o n i n g  its name in

th e  same way a service routine is called. An examp le demonstratin g the

d e f i n i t i o n  of a p rocedure  and i t s  use is shown in Figure 3. At any t ime

d u r i ng  the comp ilation of a p rocedure  the compi l e r  may he switched to

assemble mode to generate regular machine code for the ASOP instruction

allowing additional low leve l service routines . More complex syntax , such

as for ioops and conditionals , Is handl ed by more eon;p licated macros .

IV .  C o n c l u s i o n

The threaded code techni que in a d d i t i o n  to SaV I I I g  c o n s i d e r a b l e  amoun t s

of  memory space wit h little reduction in execution speed , p r o v i de s  a s truc-

ture w h i c h i  is p a r t i c u l a r ly u s e f u l  in p r o g r a m m i n g  l a b o ra t o r y  c o m p u t e r s .  Lx—

p er i u n e n t a l  p rograms  f i t  n a t u r a l l y in to  t h e  h u i e r a r c h u i c a l  s t r u ct u r e  of t h r e a d e d

code especia l ly when they w i l l  be c o n t i n u a l l y  m o d i f i ed .  A m i c r o pr o gr a mah~~e

computer is especiall y usefu l for imp lementing a threaded code S stem because

it allows a more comp lex in t e r p r e t e r  to  be u sed v i  t h i o u t  a si g n i f i c a n t  p e n n  i t v

In e x e c u t i o n  speed.  T h e  p resenc e  of t h e  m L c r o c o d e d  In u r p r e  icr and a mac huine

i n s t r u c t  ion  to use i t  t r . u u : s f u r n ~s a t y p i c a l  mii i  i c ’ n i p : u t e r  into a ihure aded cod .-

macl ine wit !: interest in g  poss ii) i i i  t i cii  f o r  s t r u e  L u  red p r - g r l m r u i ug .  U~. t i : :  a t e

c om p u t e r  sy s t e m s  i n ten d e d  f o r  use iii J u l i o  r a t e r ;  d l v i  r n : i e n t s  s l u o u l u  DC

u-i p c ci f ical ly des igne . i to use a ii ierai- chu i ca l p r o  gr ;: iun in ~ t u c  In g i I C  sucn as

threaded code.

_ _ _  
------ 5----  



FIGURE CAPLIOdS

Figure 1. Threaded code

Figure 2. Threaded code with a control stack

Figure 3. 1i~mump1e of the h ISS system threaded code. Procedure PLLI

is defined in terms of microcoded service routines . It

cat: then be used us an i n s t r u c t i o n  in an”  i~i g d e r  i ey c l

procedure such as ~.MAX .



-~~~~~~~~~~~~~~~~~ _ _ _

- 

> THREA DED PROGRAM

7 7 -

Nf\ C b I I N E  CODE
-- SERVICE ROUTiNES



-~~~~ - -~~~~~~~~~— -~~-~~~~ -~~~~~~~~~ ~~ 
5-

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~ ..- — --— - - S

p -
~

THREADED PROGRAM

THREADED SUBPROGRAMF t
L _

_ MAC H INE CODE
SERVICE ROUT I hE S

L__

I

—-

~

- -- -5----- ,

~

5 - - -

*

* PROCEDURE TO DELETE WORD 1 OF DATA STACK

*

• PROC DELl BEGIN

XCII * EXC h ANGE TOP 2 WORD S

DEL * DELETE TOP WORD

NEXT * DO NEXT INSTRUCTION

END

*

* PROCEDURE TO CHOOSE TilE M~ XIMUN OF TWO iNTEGERS

*

PROC I.MAX BEGIN

DDUP * DUPLICATE TWC STACK W ORI) S

IF I • ~ IS TOP WORD SMALLER OF ~Cu!

THEN DEL * YES , DELETE IT

ELSE DELI * NO , DELETE SECON D VOF D

NEXT * EXIT FEUN P R OCED U RE

ESD

P.

Si

i~a - —- --~~~~~ . _ _ _ _

•

.

Re ferences

1. Bell , J.R. Threaded code . Comm . ACM 16, 6(June 1973), 370—372.

2. Dali, O.J., Dijkstra , E.W ., and Hoare , C.A.R. Structured Programming
Academic Press , London , 1972.

3. Dewar , R.B.K. Indirec t threaded code. Co rns: ACM 18, 6(June 1975),
330—331.

4 . Moore , C.II . FORTH : a new way to p r o g r a m a m i n i — c o m p u t e r . As t ron .
Astrophys. Supp l. 15, (1974), 497—511.

5. Philli ps , J.B. and Burke , M .F . P rog rammin g t echn i ques fo r c hu r o m a t o g r a p h i c
exper iments . J. Chronu . Sci. 14, 6(June 1976), 270—274.

6. Stoy, J.E. and Strachiery , C. 0 S6—An experimental operating sy s tem f o r a
small computer. Part I: General princi p les and structure . Computer J.
15, 2(May 1972), 117—124.

7 . Wri gh t . S. Invoca t ion — the key to p rogram s t r u c t u r e . Comm. ACM 19,
6(1976), 361.

is


~~~~ 5-” ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~‘ W 5 -  ~~~~~~~. ~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

p -- - - -— ------ - - -  —- -—--- - ~~~~.. 

5- L L  ~‘ - _ L  • ‘ ‘~ ‘ ‘ s O A ~~~~~~~~~~~~~~~~~~~~ •~~~,.- •  
—

REPORT DOCUME~ TA T ION PAG E 
~~~~~~~~~~~~~~

_
~~~~~~~~

_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- —Ui
- f I ,1 [PORT NUMBER

aL
}2 OVl

~~~
CC E S

~~
oN N f •  

3~~~~EC 7 S C A ~~~~~OG NUM B ~~~~~~
/ , ~/ 

J—S.- —,•~ .------.-,~— r—— —-- —--——-—--————~-,... — 
~~ V~~~~~bT~~TZ~~~R T & P E R I  00 COy ER~~D . .

THREADED CODE FOR LABORAT ORY COMPUTER S . / 
‘l e ch in i ca l  Repor t  

____

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6 P~ ~~~~~~~~~~~~ OR ~ R E P O R T  NUMB ER

__ l o c h .__l- ~ep or t_ No._ 8
~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

8 ____

~ —~ - r ~~~~ ’ O R G A N I 2 A T I O N NA M E A N D A D D R E S S
- •

IS P R O G RA U E LE M~~N T . P RGJ ~~CT . TAS I(

Department of Chemistry ,.(~~~~~~~ ____

University of Arizona / / J 7 i~t
’
~~/~ ‘/‘/ / NRO51—5l8

Tucson Arizona 85721 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . - ______________________________ S .
I t . C O N T R O L L I N G O F E I C E N A M E AN D A i ’ D R E S S

-
12. R E P O R T D A T E

Materials Sciences Division / ~ \ s/ 1/ ~ Febru ary 7, 1977
-

Office of Naval Research (/‘i~ — /~3 ~~ N U M B E R O F P A G E S

Arlington , VA 22217

~~~ 
I 1 9

IS  M O N I T O R I N G  A G E N C Y  NA M E  8 A O D R E S S ( I (  d l f fy  om CorilroiI7r~i Of f R - r , )  IS S E C U R I T Y  C L A S S .  (of Chii r. p or l)

Office of Naval Research UNCLASSIFIED
(CODE 472)  

_____________

I 5&  DE C . A S S I F I C A T I O N  O O W N G R . S D I N G  ______Arlington, VA 22217 S C N E D U L E

15 .  D I S T R I B U T I O N  S T A T E M E N T  (of r h f s  ReporI) S -

Dis t r ibu t ion  of this document is unl imi ted .  

~~~ 2’- ’~~ L’ 55~.AT~ ~~~~~~~~~ /
17. D ISTRIBUTION S T A T E M E N T (ol the ab.Iracl enIered In Block 20 , If ~f IIf,renI Iron , Ro po rI)

t O S U P P L E M E N T A R Y N O T E S

I A . KEY WORDS (Continue on ye,’.,,, d d e ii nec..sary and identify b block n um b.,)

interpre ter , threaded code , machi ne code , subroutine calls , tine tradeoff ,
space tradeoff , compiled code , code genera tion , laboratory comp uters ,
problem oriented languages

20. ABS\~~AC T (Conllnue on rev,,,. d d e ii , ,ece aaary and ider,Iify by block numb,,)

1J A typ ical minicomputer has been transform ed i n t o .i threaded code
machine by the add i t ion of a s imple , f a s t in t e r ; ’i -~-~ or f l i p ~er , t i t e d in micro —
code . When made directl y available to the p r o gr ~t nintc r , t he t i u r o ded cod e
programming techn ique is a very convenien t and e f f i c i e n t me.u i~ of structuring

• p rograms , pa r t i cu la r ly in systems where p rograms are c n t i ’l u a l l be ing
.
“

modif ied . _____

DD j~)4 73 ~473 E D I T I O N OF I NOV ~ S IS O B S O L E T E
S/N 0102 IF 014 fiGOI ______________

~~~~

._ ________ -

S j S E C U R I T Y  C L A S S I F I C 6 T I D N  O~ 
‘T~~~S 0 ~~~~~ U)~sn LI ., .  A. i.,.d

~~~~~~~~~~~ ~•~H ~~~~~~~~~~~~~~~~~~~ ~~~~~. 

.

S.1 :±
~~~~~~~~ i


